Step of Proof: decidable__implies
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
decidable
implies
:
P
,
Q
:
. Dec(
P
)
Dec(
Q
)
Dec(
P
Q
)
latex
by ((Unfold `decidable` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
P
:
C1:
2.
Q
:
C1:
3.
P
(
P
)
C1:
4.
Q
(
Q
)
C1:
(
P
Q
)
(
(
P
Q
))
C
.
Definitions
t
T
,
P
Q
,
Dec(
P
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
not
wf
origin